SUMMER PACKET

3RD GRADE
PREPARATION

[Content not visible due to black background]
Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

January

February
March
April
May
June
July
August
September
October
November
December

one

two

three

four

five

six

seven

eight
Name _______________________

va

why

ox

name

what

quit

quiet

yes

too
BL

BO

TO

OF

cook

book

long

came

low
Choose a **subject** from the box to complete each sentence.

A big spider A gray dolphin The houseplant
A buzzing bee My mother My closet
My notebook The eye doctor The space alien

1. ________________________ looked for nectar in the flower.

2. ________________________ has lots of clothes in it.

3. ________________________ checked my vision.

4. ________________________ needs soil, water, and sunlight.

5. ________________________ landed the UFO.

6. ________________________ jumped in the sea.

7. ________________________ was upset because I broke her favorite vase.

8. ________________________ is filled with stories that I wrote.

9. ________________________ spun a web in the doorway.
Choose a predicate from the box to complete each sentence.

- watered her flowers
- blew in the wind
- fixed the sink
- barked all night long
- ate crickets
- slept in her crib
- drove me to school
- cut the boy's hair
- flew the airplane

1. The pilot ____________________________

2. The gardener __________________________

3. The little puppy __________________________

4. The barber __________________________

5. James' baby sister __________________________

6. The flag __________________________

7. The lizard __________________________

8. The plumber __________________________

9. The bus driver __________________________
Plural Nouns

A noun that names only one thing is a **singular noun**.
 examples: book, dish

A noun that names more than one thing is a **plural noun**.
 examples: books, dishes

Most singular nouns can be made plural by just adding an *s* to the end.

Nouns ending in *x*, *z*, *s*, *sh* and *ch* form the plural by adding an *es* to the end.

Singular: I have a colorful **dish**.

Plural: I have lots of colorful **dishes**.

Add an *s* or *es* at the end of each word to form the plural.

1. flower
2. tool
3. box
4. tree
5. flash
6. church
7. lunch
8. apple
9. peach
10. truck
11. waltz
12. crash
13. blanket
14. tax
15. dog
16. egg
17. car
18. beach
19. wish
20. cloud

Challenge: On the back of this paper, write a complete sentence that has a singular noun **and** a plural noun in it.
A fact is something that can be proven true.
An opinion is someone's feelings about a particular topic.

Tell whether each sentence is a fact or opinion.

1. ____________ Sunday is the best day of the week.
2. ____________ George Washington was born in February.
3. ____________ Memorial Day is the most important holiday of the year.
4. ____________ Thanksgiving is celebrated in autumn.
5. ____________ Some families eat turkey on Thanksgiving.
6. ____________ Watching fireworks on the 4th of July is lots of fun.
7. ____________ April is a month with 30 days.
8. ____________ There are 12 months in the year.
9. ____________ This has been a terrible week.
10. ____________ Spring is the most beautiful season of all.
11. ____________ Monday, Wednesday, and Friday are weekdays.
12. ____________ The first day of the school year is scary.
13. ____________ Everyone should make Valentine's Day cards.
14. ____________ Your birthday comes only one day a year.
Common and Proper Nouns

Determine whether each noun is a common noun or a proper noun.
- If the noun is common, write **common noun** on the line.
- If the noun is proper, re-write the noun on the line using correct capitalization.

| examples: | waterfall | **common noun** | niagara falls | **Niagara Falls** |

1. march
2. month
3. day
4. tuesday
5. holiday
6. christmas
7. cereal
8. cheerios
9. dr. gomez
10. doctor
11. city
12. boston
13. street
14. main street
15. burger king
16. restaurant
17. slate creek
18. creek
19. dog
20. snoopy

★ Challenge: Write a complete sentence that has a proper noun **and** a common noun in it.

__

__

Super Teacher Worksheets - www.superteacherworksheets.com
Alien Adjectives

Circle the adjective in each sentence. Then, tell what noun the adjective is describing.

examples: The**green** alien walked out of the spaceship.
The adjective **green** describes the **alien**.

1. The shiny spaceship landed in my yard.

 The adjective __________________________ describes __________________________

2. An alien with big eyes walked out of the ship.

 The adjective __________________________ describes __________________________

3. It waved its tiny hand in the air.

 The adjective __________________________ describes __________________________

4. The alien said, “Earth is such a beautiful planet.”

 The adjective __________________________ describes __________________________

5. A brown rabbit hopped into the yard and scared the alien.

 The adjective __________________________ describes __________________________

6. The frightened alien ran back into its spaceship and blasted off.

 The adjective __________________________ describes __________________________
Cut out the noun tiles at the bottom of the page. Glue them into the box under the correct type of noun.

People

Places

Things

- grandma
- country
- tree
- teacher
- rock
- baby

- pencil
- woman
- cloud
- store
- state
- singer

- water
- city
- book
- office
- policeman
- playground
An action verb is a word that shows what someone or something is doing.

Examples:
- Mary **sleeps** on the couch.
- Jason's best friend **thinks** of a plan.
- Ken and his mother **cook** dinner.

Circle the action verb in each sentence.

1. Sal listens to his favorite song.
2. Craig hits the baseball over the fence.
3. The little pig grunts.
4. The roof of the house leaks.
5. The hunter searches for a deer.
6. Dr. Gold examines his patient.
7. The bluebird in the tree sings beautifully.
8. The football team dashes out of the locker room.
10. Mrs. Gray buys a roll of paper towels at the store.
11. Judy solves the mystery.
12. Harold finds a purple crayon.
Action Verbs

Tell whether each word is an action verb or noun. Write the words action verb next to each action verb. Write the word noun next to each noun.

13. swims
14. thinks
15. sneezes
16. clock
17. tooth
18. drives
19. takes

20. basketball
21. plays
22. relaxes
23. grass
24. game
25. writes
26. book

Write a sentence with an action verb to describe each picture. Underline the action verb.

27.

28.

29.
An adverb is a word that describes an action verb.

An adverb can describe how an action happens.
example: Jason (quickly) read the book.
 How did Jason read? Quickly.

An adverb can describe when an action happens.
example: Emma left (early).
 When did Emma leave? Early.

An adverb can describe where an action happens.
example: Lily and Ben played (here).
 Where did Lily and Ben play? Here.

An action verb is underlined in each sentence. Circle the adverb that describes the verb.

1. My grandpa snored loudly.

2. Chloe played on the beach yesterday.

3. I will visit my friend tomorrow.

4. George, will you come here?

5. My sheepdog sat lazily in the pool.

6. Neil slowly placed a card on the card house.
7. Neil **stopped** suddenly and listened.

8. Nathan **stamped** his feet angrily.

9. I carefully **glued** the last piece onto the model.

10. Sam accidentally **slipped** on the ice.

11. Yesterday, they **played** a game.

12. The truck **grumbled** loudly.

13. We will **go** to the concert soon.

14. Jen **waited** patiently for the computer to load.

15. Kayla finally **arrived** at the park.

16. My mother nicely **reminded** me to do my homework.

17. The astronaut easily **fixed** the problem.

18. I usually **hug** my mother when I get home.

19. My dog always **barks**.

20. Peter neatly **wrote** a shopping list.
Circle the pronouns in the sentences below. Some sentences have more than one pronoun.

5. She went to the store with Angeliu.

6. Six of us had to squeeze in the tiny car.

7. Every Thursday, Kenny goes to Wal-Mart with them.

8. At the store, the cashier gave her some change.

9. When the sun comes up, he leaves for work.

10. I enjoyed seeing them on the playground.

11. Have you hung the painting on the wall yet?

12. If I eat all of these vegetables, mother will let me watch television.

13. We played with the puppy, then fed her a biscuit.

14. Have you seen the sandcastle we built?

15. I bounced the ball and Jack ran after it.
Pronouns

A pronoun is a word that takes the place of a noun.

example: John is a mail carrier. John carries a blue bag.

To make the second sentence sound better, you can change the word John to he.

new sentence: John is a mail carrier. He carries a blue bag.

The word he is a pronoun that takes the place of the word John.

Some common pronouns include:

- I, you, he, she, it, we, they, you, him, her, them, it, us

Rewrite each sentence. Change the underlined word or words to a pronoun.

1. Sarah made dinner for the whole family.

2. Tyler played tag with Miguel and Ramon.

3. Mr. Cane went to the movies with Mrs. Cane.

4. The house needs a fresh coat of paint.
Synonyms & Antonyms

Synonyms are words that have almost the same meaning.

example: The words big and large are synonyms.

Antonyms are words that have opposite meanings.

example: The words open and closed are antonyms.

Tell whether each pair of words are synonyms or antonyms.

1. agree, disagree
2. cold, freezing
3. easy, difficult
4. argue, squabble
5. guess, estimate
6. bottom, top
7. tired, energetic
8. huge, gigantic
9. sink, float
10. windy, calm
11. noisy, quiet
12. unhappy, sad

Write one complete sentence that includes two words that are antonyms. Choose antonyms that are different from the ones listed above.

__

__
The Closet Creature

By Kelly Hashway

Bump! Bump! Scratch!

Adam opened his eyes and pulled the covers up to his chin. He stared around his room, searching the darkness for the thing that was making those scary sounds.

The closet door moved as something banged on it from the inside.

"Who’s there?" Adam asked in a shaky voice.

The closet slowly began to open. Adam jumped out of bed and ran to the closet door, slamming it shut with his palms. He grabbed his desk chair and propped it against the door handle. Then he ran out of his room and down the hall. His brother’s door was wide open, and Adam jumped onto David’s bed.

"Adam?" David asked in a groggy voice. "What are you doing in here?"

Adam tugged on David’s arm. "There’s something in my closet!"

"You probably had a bad dream. Go back to bed."

Adam yanked the blankets off the bed. "It wasn’t a dream. I was awake, and the closet door started opening by itself!"

David sighed. "Fine. But when we don’t find anything, you have to promise to leave me alone for the rest of the night."

Adam nodded. David reached into his desk drawer and pulled out a flashlight. Then they headed to Adam’s room. Adam stopped in the
doorway. He could hear something scratching his closet door.

"Do you hear that?" Adam asked.

David nodded. He walked over to Adam's bed and pulled the case off one of the pillows. He opened the pillowcase.

"You open the door very slowly, and I'll grab whatever it is."

Adam slid the chair to the side and pulled the closet door open a crack. Something banged against the door, trying to force it open. Adam took a deep breath and opened the door a few more inches. A small furry creature ran right into the pillowcase.

"I got it!" David said, closing the pillowcase and holding it in the air.

"What is it?" Adam moved closer as David peeked inside.

David put the pillowcase on the bed and an orange cat climbed out.

Adam scooped the cat up. "Apricot? How did you get trapped in my closet?"

David laughed. "The poor cat. If I was locked in your closet with your stinky shoes, I'd be banging on the door to get out, too!"

"Poor, Apricot," Adam said. "You were probably more scared than I was."
1. What happened right after David went into Adam’s room?
 a. Adam jumped into David’s bed.
 b. David grabbed a flashlight from his desk drawer.
 c. Adam awoke to strange sounds coming from his bedroom closet.
 d. David heard the noise coming from Adam’s closet.

2. What did David plan to do with the pillowcase?
 a. keep the creature from coming out of the closet
 b. scare the creature in the closet
 c. catch the creature in the closet
 d. hit the creature in the closet

3. What was making the strange sounds in Adam’s closet?
 __
 __

4. Write three adjectives that describe David. Tell why you chose each word.
 __ because __
 __ because __
 __ because __

5. What type of story is this?
 a. tall tale b. non-fiction
 c. mystery d. fable
The Closet Creature
By Kelly Hashway

Fill in the missing letters to create words from the story. Then, write the full word on the line. Be sure to spell each word correctly.

1. _____ o _____ y
 clue: sleepy

2. _____ l _____
 clue: past tense of slide

3. _____ m s
 clue: inner surfaces of the hands

4. _____ a _____
 clue: soft bag for keeping a pillow clean

5. _____ e _____ e d
 clue: went towards

6. _____ i o _____
 clue: orange fruit

7. _____ e _____ e d
 clue: took a quick look
The Closet Creature
By Kelly Hashway

Characters: List the main characters and briefly describe them.

Setting: Tell where and when the story takes place. Be specific.

Problem: Describe the main character's problem.

Solution: Tell how the problem was solved, and how the story ended.

Personal Opinion: Tell whether or not you liked the story, and justify your opinion.

Retell “The Closet Creature” from the cat’s point-of-view. Then, on a separate sheet of white paper, draw a picture to accompany your story.
Big Money

Imagine you had a hundred dollars, but you couldn't keep it. You had to give it away to a person or charity. To whom would you give it? What would you want them to do with it?
Summer Review #2

Show your work (stack the numbers) **show any carrying and borrowing**

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the sum</th>
<th>Find the difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$75 + 34 = $</td>
<td>$75 - 34 = $</td>
<td>$55 + 32 = $</td>
<td>$55 - 32 = $</td>
</tr>
<tr>
<td>$100 + 13 = $</td>
<td>$100 - 13 = $</td>
<td>$50 + 18 = $</td>
<td>$50 - 18 = $</td>
</tr>
</tbody>
</table>

Round to the nearest 10.

14 ____ 27 ____ 41 ____ 19 ____ 33 ____ 96 ____

Which equation has the same unknown value as $12 - 4 = []$?

- **A** $[] - 4 = 12$
- **B** $4 + 12 = []$
- **C** $4 - 12 = []$
- **D** $4 + [] = 12$

Which equation has the same unknown value as $6 + [] = 14$?

- **A** $[] - 6 = 14$
- **B** $14 + [] = 6$
- **C** $14 - 6 = []$
- **D** $14 + 6 = []$

Does replacing the unknown number with 6 make each equation true? Mark Yes or No for each equation.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9 + [] = 15$</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>$8 + [] = 13$</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>$13 - [] = 7$</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>$15 - [] = 10$</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Peter had 10 dollars in his pocket. His dad gave him another $5 for the movie. He spent $8 on the movie and snacks. How much money does Peter have left?
Show your work (stack the numbers) show any carrying and borrowing.

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the sum</th>
<th>Find the difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$59 + 43 =$</td>
<td>$59 - 43 =$</td>
<td>$64 + 25 =$</td>
<td>$64 - 25 =$</td>
</tr>
<tr>
<td>$100 + 44 =$</td>
<td>$100 - 44 =$</td>
<td>$60 + 13 =$</td>
<td>$60 - 13 =$</td>
</tr>
</tbody>
</table>

Round to the nearest 10.

23 ____ 38 ____ 52 ____ 17 ____ 74 ____ 89 ____

Which equations have the same unknown value as $15 - 7 = \square$?

- **A** $\square - 7 = 15$
- **B** $15 + 7 = \square$
- **C** $15 - \square = 7$
- **D** $7 + \square = 15$

Which equation has the same unknown value as $5 + \square = 11$?

- **A** $\square - 5 = 11$
- **B** $11 + \square = 5$
- **C** $11 + 5 = \square$
- **D** $11 - 5 = \square$

Does replacing the unknown number with 7 make each equation true? Mark Yes or No for each equation.

<table>
<thead>
<tr>
<th>8 + \square = 15</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 + \square = 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 - \square = 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 - \square = 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jason had 4 dollars in his lunch account. His mom gave him another $15 for lunches. Lunch costs $3 a day. If he bought lunch 3 days this week how much money does Jason have left in his account?
Show your work (stack the numbers) show any carrying and borrowing

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the sum</th>
<th>Find the difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$74 + 38 =$</td>
<td>$74 - 38 =$</td>
<td>$83 + 25 =$</td>
<td>$83 - 25 =$</td>
</tr>
<tr>
<td>$100 + 54 =$</td>
<td>$100 - 54 =$</td>
<td>$70 + 23 =$</td>
<td>$70 - 23 =$</td>
</tr>
</tbody>
</table>

Round to the nearest 100.

123 _____ 382 _____ 512 _____ 173 _____ 744 _____ 869 _____

Which equations have the same unknown value as $16 - 9 = [\square]$?

A. $16 - [\square] = 9$
B. $[\square] - 9 = 16$
C. $16 + [\square] = 9$
D. $9 + [\square] = 16$

Which equation has the same unknown value as $8 + [\square] = 17$?

A. $[\square] + 8 = 17$
B. $17 + [\square] = 8$
C. $8 - 17 = [\square]$
D. $[\square] - 8 = 17$

Does replacing the unknown number with 4 make each equation true? Mark Yes or No for each equation.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4 + [\square] = 8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$8 + [\square] = 13$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$13 - [\square] = 10$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$16 - [\square] = 12$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Josh has 73 cents, Sean has 88 cents, and Tara has 45 cents. By rounding each to the nearest 10, estimate about how much money they have together?
Show your work (stack the numbers) show any carrying and borrowing.

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the sum</th>
<th>Find the difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>185 + 47 =</td>
<td>185 - 47 =</td>
<td>383 + 147 =</td>
<td>383 - 147 =</td>
</tr>
<tr>
<td>200 + 115 =</td>
<td>200 - 115 =</td>
<td>400 + 223 =</td>
<td>400 - 223 =</td>
</tr>
</tbody>
</table>

Round to the nearest 100.

351 _____ 832 _____ 270 _____ 713 _____ 477 _____ 837 _____

Which equations have the same unknown value as 14 - 9 = □?

① 14 - □ = 9
② □ - 9 = 14
③ 9 + □ = 14
④ 14 + □ = 9

Which equation has the same unknown value as 6 + □ = 17?

① □ + 17 = 6
② 17 + □ = 6
③ 17 - □ = 6
④ 6 - 17 = □

Does replacing the unknown number with 5 make each equation true? Mark Yes or No for each equation.

<table>
<thead>
<tr>
<th>4 + □ = 8</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 + □ = 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 - □ = 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 - □ = 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Josh has 703 cents, Sean has 880 cents, and Tara has 452 cents. What is the difference in how much Sean and Tara have?
Show your work (stack the numbers) show any carrying and borrowing

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the sum</th>
<th>Find the difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(770 + 278 =)</td>
<td>(770 - 278 =)</td>
<td>(530 + 217 =)</td>
<td>(530 - 217 =)</td>
</tr>
<tr>
<td>(800 + 531 =)</td>
<td>(800 - 531 =)</td>
<td>(900 + 456 =)</td>
<td>(900 - 456 =)</td>
</tr>
</tbody>
</table>

Round to the nearest 10. 6,345 _______ 2,823 _______ 5,257 _______

Round to the nearest 100. 6,345 _______ 2,823 _______ 5,257 _______

Round to the nearest 1,000. 6,345 _______ 2,823 _______ 5,257 _______

<table>
<thead>
<tr>
<th>Find the Product</th>
<th>Find the Product</th>
<th>Find the Product</th>
<th>Find the Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 \times 6 =)</td>
<td>(5 \times 4 =)</td>
<td>(10 \times 3 =)</td>
<td>(4 \times 3 =)</td>
</tr>
</tbody>
</table>

Show the multiplication facts on the number line

\(2 \times 6 = \) _______ means 2 jumps of 6

\(5 \times 4 = \) _______ means 5 jumps of 4

\(4 \times 3 = \) _______ means 4 jumps of 3
Summer Review #9

Show your work (stack the numbers) show any **carrying** and **borrowing**

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the sum</th>
<th>Find the difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>707 + 348 =</td>
<td>707 - 348 =</td>
<td>430 + 211 =</td>
<td>430 - 211 =</td>
</tr>
<tr>
<td>800 + 624 =</td>
<td>800 - 624 =</td>
<td>914 + 465 =</td>
<td>914 - 465 =</td>
</tr>
</tbody>
</table>

Round to the nearest 10. 7,632 ______ 1,486 ______ 3,054 ______

Round to the nearest 100. 7,632 ______ 1,486 ______ 3,054 ______

Round to the nearest 1,000. 7,632 ______ 1,486 ______ 3,054 ______

<table>
<thead>
<tr>
<th>Find the Product</th>
<th>Find the Product</th>
<th>Find the Product</th>
<th>Find the Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 8 =</td>
<td>5 x 5 =</td>
<td>10 x 7 =</td>
<td>8 x 2 =</td>
</tr>
</tbody>
</table>

Show the multiplication facts on the number line
2 x 8 = ____ means 2 jumps of 8

5 x 5 = ____ means 5 jumps of 5

8 x 2 = ____ means 8 jumps of 2
Show your work (stack the numbers) show any carrying and borrowing.

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the product</th>
<th>Find the product</th>
</tr>
</thead>
<tbody>
<tr>
<td>657 + 369 =</td>
<td>657 - 369 =</td>
<td>3 × 7 =</td>
<td>4 × 8 =</td>
</tr>
<tr>
<td>806 + 418 =</td>
<td>806 - 418 =</td>
<td>6 × 7 =</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 × 8 =</td>
</tr>
</tbody>
</table>

Which equations have the same unknown value as 18 ÷ 2 = □?

A 18 ÷ □ = 2
B 2 ÷ □ = 18
C 18 × □ = 2
D 2 × □ = 18

Which equation has the same unknown value as 5 × □ = 30?

A □ × 5 = 30
B 30 × □ = 5
C □ ÷ 30 = 5
D 5 ÷ 30 = □

Show the multiplication facts using the area model:

4 × 9 = ___ means 4 rows of 9

3 × 6 = ___ means 3 rows of 6

Janice planted 6 rows of blue flowers and 2 rows of red flowers. She put 6 flowers in each row. How many of each color did she plant? How many more blue flowers did she plant?

Janice planted ____ blue flowers & ____ red flowers.

She planted ____ more blue flowers.
Show your work (stack the numbers) show any carrying and borrowing

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the product</th>
<th>Find the product</th>
</tr>
</thead>
<tbody>
<tr>
<td>756 + 639 =</td>
<td>756 - 639 =</td>
<td>3 \times 9 =</td>
<td>4 \times 7 =</td>
</tr>
<tr>
<td>608 + 481 =</td>
<td>608 - 481 =</td>
<td>6 \times 9 =</td>
<td>8 \times 7 =</td>
</tr>
</tbody>
</table>

Which equations have the same unknown value as $27 \div 3 = \square$?

A) $3 \div \square = 27$
B) $27 \div \square = 3$
C) $27 \times \square = 3$
D) $3 \times \square = 27$

Which equation has the same unknown value as $5 \times \square = 45$?

A) $\square \times 45 = 5$
B) $5 \times 45 = \square$
C) $45 \div \square = 5$
D) $5 \div 45 = \square$

Does replacing the unknown number with 5 make each equation true? Mark Yes or No for each equation:

<table>
<thead>
<tr>
<th>Equation</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4 \times \square = 16$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$20 \div \square = 4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$7 \times \square = 35$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Show the multiplication facts using the area model

$4 \times 7 = \square$ means 4 rows of 7

$4 \times 10 = \square$ means 4 rows of 10
Show your work (stack the numbers) show any carrying and borrowing

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the product</th>
<th>Find the product</th>
</tr>
</thead>
<tbody>
<tr>
<td>974 + 396 =</td>
<td>974 - 396 =</td>
<td>3 × 4 =</td>
<td>5 × 7 =</td>
</tr>
<tr>
<td>501 + 382 =</td>
<td>501 - 382 =</td>
<td>6 × 4 =</td>
<td>9 × 7 =</td>
</tr>
</tbody>
</table>

Which equations have the same unknown value as 24 ÷ 8 = □?

A 8 ÷ □ = 24
B 24 × □ = 8
C 24 ÷ □ = 8
D 8 × □ = 24

Which equation has the same unknown value as 8 × □ = 32?

A □ × 32 = 8
B □ × 8 = 32
C 8 ÷ □ = 32
D 8 ÷ 32 = □

Does replacing the unknown number with 7 make each equation true? Mark Yes or No for each equation.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 × □ = 28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 ÷ □ = 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 × □ = 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jim has 3 cats. He fills the food bowl with 12 ounces of dry food a day. If they each eat the same amount, how much dry food does each cat eat?

Each cat eats _______ ounces of dry food.
Show your work (stack the numbers) show any carrying and borrowing

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the product</th>
<th>Find the product</th>
</tr>
</thead>
<tbody>
<tr>
<td>749 + 650 =</td>
<td>749 - 650 =</td>
<td>4 x 7 =</td>
<td>5 x 9 =</td>
</tr>
<tr>
<td>601 + 465 =</td>
<td>601 - 465 =</td>
<td>6 x 8 =</td>
<td>9 x 9 =</td>
</tr>
</tbody>
</table>

Fill in the blank to make the equation true.

\[3 \times \square = 4 \times 6\]
\[25 \div \square = 12 - 7\]
\[40 \div \square = 11 - 7\]
\[9 + \square = 3 \times 6\]

Does replacing the unknown number with 3 make each equation true? Mark Yes or No for each equation.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x \square = 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 \div \square = 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 x \square = 21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Which would you use to measure the capacity of a juice box?

A. kilograms
B. millimeters
C. milliliters
D. meter

Show your work using numbers, pictures, or words.

Tom is shopping for shirts. The Canyon has shirts on sale for $10 each. The Max has shirts for $12 each. How much will Tom save if he buys 5 shirts at The Canyon instead of The Max?

Tom will save ___________.

©Mrs. Means
Show your work (stack the numbers) show any carrying and borrowing.

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the product</th>
<th>Find the quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>740 + 576 =</td>
<td>740 − 576 =</td>
<td>6 × 7 =</td>
<td>36 ÷ 9 =</td>
</tr>
<tr>
<td>704 + 565 =</td>
<td>704 − 565 =</td>
<td>7 × 9 =</td>
<td>45 ÷ 5 =</td>
</tr>
</tbody>
</table>

Fill in the blank to make the equation true.

7 × ____ = 4 + 10
28 ÷ ____ = 12 − 5
32 ÷ ____ = 11 − 3
8 + ____ = 4 × 4

Does replacing the unknown number with 9 make each equation true? Mark Yes of No for each equation.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 × □ = 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 ÷ □ = 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 × □ = 56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Which would you use to measure the length of a paper clip?

- A) kilograms
- B) millimeters
- C) milliliters
- D) meter

Complete the number line

--- --- --- --- --- --- --- --- 1

Equivalent Fractions

\(\frac{1}{3} = \) \(\frac{1}{2} = \) \(\frac{2}{3} = \)
Show your work (stack the numbers) show any **carrying** and **borrowing**

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the product</th>
<th>Find the quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>$904 + 729 =$</td>
<td>$904 - 729 =$</td>
<td>$8 \times 4 =$</td>
<td>$63 \div 9 =$</td>
</tr>
<tr>
<td>$2100 + 585 =$</td>
<td>$2100 - 585 =$</td>
<td>$7 \times 8 =$</td>
<td>$54 \div 6 =$</td>
</tr>
</tbody>
</table>

Fill in the blank to make the equation true.

$2 \times ____ = 4 + 12$
$36 \div ____ = 13 - 7$
$40 \div ____ = 11 - 6$
$8 + ____ = 4 \times 3$

About how much would the mass of an apple be?

- A 1 kilograms
- B 250 milligrams
- C 250 kilograms

Which would you use to measure the length of the gym?

- A kilograms
- B millimeters
- C milliliters
- D meters

Complete the number line

```
  ←  0  |  |  |  |  |  |  |  |  1  →
```

```
  ←  0  |  |  |  |  |  |  |  |  1  →
```

Compare the fractions using $<$, $>$, or $=$

\[
\frac{3}{4} \bigcirc \frac{5}{6} \quad \frac{2}{4} \bigcirc \frac{3}{6} \quad \frac{1}{4} \bigcirc \frac{1}{6}
\]
Show your work—show carrying and borrowing

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the product</th>
<th>Find the quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>509 + 262 =</td>
<td>509 - 262 =</td>
<td>5 × 7 =</td>
<td>32 ÷ 8 =</td>
</tr>
<tr>
<td>3605 + 558 =</td>
<td>3605 - 558 =</td>
<td>5 × 70 =</td>
<td>24 ÷ 3 =</td>
</tr>
</tbody>
</table>

Write each fraction at the correct location on the number line

Which expression is equal to 7 × 7?
- A (2 × 3) + (5 × 4)
- B (2 × 5) + (4 × 3)
- C (6 × 3) + (6 × 4)
- D (7 × 5) + (7 × 2)

Use grid to help model

Which equations have the same unknown value as 32 ÷ 4 = □?
- A □ ÷ 4 = 32
- B 4 × □ = 32
- C 32 ÷ □ = 4
- D 32 × □ = 4

What are the dimensions of a quadrilateral that has an area of 30 in² and a perimeter of 22 in?

□ inches by □ inches

Name the quadrilaterals that must have right angles.

Jayne made a pan of brownies. She cut each one into 2 in by 2 in squares. The pan was 8 inches by 12 inches. How many brownies were in the pan after she cut them up?

□ brownies
Show your work - show **carrying** and **borrowing**

<table>
<thead>
<tr>
<th>Find the sum</th>
<th>Find the difference</th>
<th>Find the product</th>
<th>Find the quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>612 + 268 =</td>
<td>612 - 268 =</td>
<td>7 \times 9 =</td>
<td>64 \div 8 =</td>
</tr>
<tr>
<td>5360 + 775 =</td>
<td>5360 - 775 =</td>
<td>7 \times 90 =</td>
<td>18 \div 3 =</td>
</tr>
</tbody>
</table>

Write each fraction at the correct location on the number line

\[
\begin{array}{cccc}
\frac{3}{4} & & \frac{1}{2} & & \frac{12}{8} & & \frac{1}{8} \\
\end{array}
\]

Which expression is equal to \(4 \times 9\)?

- **A** \((4 \times 3) + (5 \times 4)\)
- **B** \((4 \times 5) + (4 \times 4)\)
- **C** \((2 \times 2) + (4 \times 5)\)
- **D** \((3 \times 5) + (1 \times 7)\)

Use grid to help model

Which equations have the same unknown value as \(45 \div 9 = \square\)?

- **A** \(\square \div 9 = 45\)
- **B** \(45 \times \square = 9\)
- **C** \(45 \div \square = 9\)
- **D** \(9 \times \square = 45\)

What are the dimensions of a quadrilateral that has an area of 36 in\(^2\) and a perimeter of 26 in? **inches by inches**

Name the quadrilaterals that have 2 pairs of parallel sides.

Hannah made a cake. She cut the cake into 2 in by 2 in squares. The cake pan was 8 inches by 8 inches. How many pieces did she cut the cake into? **pieces of cake**
Multiplication • x 0, x 1, x 2, x 3, and x 4

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
<th>x0</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
<th>x0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>x4</td>
<td>x0</td>
<td>x3</td>
<td>x1</td>
<td>x4</td>
<td>x2</td>
<td>x4</td>
<td>x3</td>
<td>x0</td>
<td>x3</td>
<td>x2</td>
</tr>
<tr>
<td>x3</td>
<td>x0</td>
<td>x3</td>
<td>x1</td>
<td>x2</td>
<td>x4</td>
<td>x3</td>
<td>x0</td>
<td>x3</td>
<td>x2</td>
<td>x2</td>
</tr>
<tr>
<td>x3</td>
<td>x2</td>
<td>x3</td>
<td>x2</td>
<td>x1</td>
<td>x4</td>
<td>x3</td>
<td>x4</td>
<td>x4</td>
<td>x4</td>
<td>x4</td>
</tr>
</tbody>
</table>
Times 4, 5 and 6 Multiplication Test

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>11</td>
<td>8</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>x 4</td>
<td>x 5</td>
<td>x 4</td>
<td>x 5</td>
<td>x 6</td>
<td>x 4</td>
<td>x 5</td>
<td>x 4</td>
<td>x 6</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>x 4</td>
<td>x 6</td>
<td>x 5</td>
<td>x 4</td>
<td>x 4</td>
<td>x 6</td>
<td>x 4</td>
<td>x 5</td>
<td>x 4</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>12</td>
<td>9</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>x 5</td>
<td>x 6</td>
<td>x 4</td>
<td>x 5</td>
<td>x 6</td>
<td>x 4</td>
<td>x 5</td>
<td>x 6</td>
<td>x 5</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>11</td>
<td>3</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>x 4</td>
<td>x 5</td>
<td>x 6</td>
<td>x 4</td>
<td>x 6</td>
<td>x 4</td>
<td>x 6</td>
<td>x 5</td>
<td>x 4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td>5</td>
<td>9</td>
<td>12</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>x 5</td>
<td>x 6</td>
<td>x 4</td>
<td>x 6</td>
<td>x 4</td>
<td>x 6</td>
<td>x 4</td>
<td>x 5</td>
<td>x 4</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>2</td>
<td>12</td>
<td>4</td>
<td>11</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>x 5</td>
<td>x 6</td>
<td>x 4</td>
<td>x 6</td>
<td>x 4</td>
<td>x 6</td>
<td>x 4</td>
<td>x 5</td>
<td>x 5</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>11</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>x 5</td>
<td>x 4</td>
<td>x 6</td>
<td>x 5</td>
<td>x 6</td>
<td>x 4</td>
<td>x 5</td>
<td>x 6</td>
<td>x 6</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>x 4</td>
<td>x 5</td>
<td>x 6</td>
<td>x 5</td>
<td>x 6</td>
<td>x 4</td>
<td>x 5</td>
<td>x 6</td>
<td>x 4</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>x 5</td>
<td>x 6</td>
<td>x 4</td>
<td>x 5</td>
<td>x 6</td>
<td>x 4</td>
<td>x 5</td>
<td>x 6</td>
<td>x 6</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>x 4</td>
<td>x 6</td>
<td>x 4</td>
<td>x 5</td>
<td>x 5</td>
<td>x 4</td>
<td>x 5</td>
<td>x 6</td>
<td>x 4</td>
</tr>
</tbody>
</table>

Score: ______ /100 Time: ______ min. ______ sec.
Multiplication • x 6 and x 7

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>x6</td>
<td>x7</td>
<td>x6</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>x7</td>
<td>x6</td>
<td>x7</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>x7</td>
<td>x6</td>
<td>x7</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>x6</td>
<td>x7</td>
<td>x7</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>x7</td>
<td>x7</td>
<td>x6</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>x7</td>
<td>x7</td>
<td>x6</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>x7</td>
<td>x7</td>
<td>x6</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>x6</td>
<td>x7</td>
<td>x6</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>x7</td>
<td>x7</td>
<td>x6</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>x7</td>
<td>x6</td>
<td>x7</td>
</tr>
</tbody>
</table>
Multiplication • x 5, x 6, x 7, x 8, and x 9

<table>
<thead>
<tr>
<th></th>
<th>x 5</th>
<th>x 6</th>
<th>x 7</th>
<th>x 8</th>
<th>x 9</th>
<th>x 5</th>
<th>x 7</th>
<th>x 6</th>
<th>x 5</th>
<th>x 6</th>
<th>x 7</th>
<th>x 8</th>
<th>x 9</th>
<th>x 5</th>
<th>x 7</th>
<th>x 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>x 5</td>
<td>x 8</td>
<td>x 6</td>
<td>x 5</td>
<td>x 6</td>
<td>x 8</td>
<td>x 9</td>
<td>x 5</td>
<td>x 7</td>
<td>x 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 9</td>
<td>x 8</td>
<td>x 7</td>
<td>x 6</td>
<td>x 5</td>
<td>x 6</td>
<td>x 8</td>
<td>x 9</td>
<td>x 8</td>
<td>x 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 8</td>
<td>x 6</td>
<td>x 5</td>
<td>x 9</td>
<td>x 5</td>
<td>x 6</td>
<td>x 5</td>
<td>x 9</td>
<td>x 7</td>
<td>x 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 7</td>
<td>x 8</td>
<td>x 5</td>
<td>x 8</td>
<td>x 9</td>
<td>x 7</td>
<td>x 6</td>
<td>x 5</td>
<td>x 9</td>
<td>x 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 6</td>
<td>x 7</td>
<td>x 6</td>
<td>x 9</td>
<td>x 8</td>
<td>x 9</td>
<td>x 8</td>
<td>x 7</td>
<td>x 9</td>
<td>x 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 5</td>
<td>x 6</td>
<td>x 9</td>
<td>x 8</td>
<td>x 6</td>
<td>x 5</td>
<td>x 8</td>
<td>x 8</td>
<td>x 5</td>
<td>x 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 5</td>
<td>x 7</td>
<td>x 8</td>
<td>x 6</td>
<td>x 9</td>
<td>x 6</td>
<td>x 8</td>
<td>x 9</td>
<td>x 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 8</td>
<td>x 6</td>
<td>x 9</td>
<td>x 9</td>
<td>x 8</td>
<td>x 9</td>
<td>x 7</td>
<td>x 7</td>
<td>x 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 9</td>
<td>x 6</td>
<td>x 7</td>
<td>x 9</td>
<td>x 5</td>
<td>x 8</td>
<td>x 5</td>
<td>x 9</td>
<td>x 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 7</td>
<td>x 6</td>
<td>x 9</td>
<td>x 6</td>
<td>x 9</td>
<td>x 6</td>
<td>x 5</td>
<td>x 8</td>
<td>x 9</td>
<td>x 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mystery Number

Each box has four numbers. Read the clues to figure out which one is the Mystery Number. Circle the correct number. Solve three mysteries in a row to get Tic-Tac-Math.

45 25 10 53
• It is more than 20.
• It has a 5 in the ones place.
• It is less than 30.

81 50 23 45
• It is less than 60.
• It is an odd number.
• It has a 2 in the tens place.

62 31 18 20
• It is an even number.
• It is less than 24.
• It is 5 groups of 4.

84 102 408 48
• It is greater than 50.
• It has a 0 in it.
• When you add 100 to it, you get 202.

452 952 421 654
• It is greater than 450.
• It is an even number.
• It has a 5 in the tens place.
• It is greater than 950.

127 307 67 142
• It has a 7 in the ones place.
• It is greater than 100.
• It has a 0 in the 'tens place.

795 895 995 305
• It has a 5 in the ones place.
• It is an odd number.
• It is more than 500.
• It is 5 less than 1,000.

199 47 124 109
• It is greater than 100.
• It is an odd number.
• It is 1 less than 200.

429 381 364 533
• It has a 3 in it.
• It is an odd number.
• It is greater than 300.
• The numbers add up to 12.
Greater Than or Less Than?

Compare. Write < or >.

1. 1,999 ____ 2,111
2. 4,441 ____ 4,144
3. 988 ____ 899
4. 1,404 ____ 4,101
5. 1,111 ____ 999
6. 5,055 ____ 5,555
7. 698 ____ 689
8. 771 ____ 717
9. three hundred forty-five ____ 354
10. 758 ____ seven hundred eighty-five
11. four hundred fifty ____ 405
12. 7,806 ____ six thousand seventy-eight
Figuring Out Fractions

1. Write a fraction to tell what portion of the figure is shaded.

![Shaded figures]

2. Shade each fractional part. Circle the fraction nearest to one whole.

![Shaded figures with fractions]

3. Use the fraction code to spell new words. Write the letters in the order they appear in the clues.

The first \(\frac{2}{3} \) of pop.
The second \(\frac{1}{2} \) of only.
The first \(\frac{1}{2} \) of goat.
The last \(\frac{1}{4} \) of rain.

The last \(\frac{3}{5} \) of extra.
The first \(\frac{2}{5} \) of penny.
The first \(\frac{2}{3} \) of zoo.
The first \(\frac{1}{2} \) of idea.
Sea Shopping

Help the dolphin find its way to the Sea Shop. First solve each problem. To show the dolphin the path, color each piece of coral that has a quotient of 6 or less blue.

Color each piece of coral that has a quotient of 7 or more yellow. Then unscramble the yellow letters to solve the rhyming riddle.

Riddle: What do you call a bargain for a sea mammal?
Answer: A _____ _____ _____ _____ OF A _____ _____ _____ _____!
What does Pinocchio feed his wooden dog?
Read the clocks. Write the times.
Solve the riddle using your answers.

<table>
<thead>
<tr>
<th>C</th>
<th>P</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>H</td>
<td>E</td>
<td>O</td>
</tr>
</tbody>
</table>

Solve the Riddle! Write the letter that goes with each time.

Time for a Riddle

Read the riddle. To find the answer, find the clockface that matches the time written under each blank line. Then write the letter under the clockface on the blank line.

Riddle: What did the little hand on the clock say to the big hand?

Answer: “

10:00 3:30 3:30 6:05 2:25 3:45 6:15

4:45 6:05 2:55 3:45 3:45 2:55

O U E N

T Y M A
Playground Perimeters

Some playground equipment and sandboxes look like the shapes below. Solve three perimeter problems to get Tic-Tac-Math!

What is the perimeter of this triangle?

_____ inches

What is the perimeter of this rectangle?

_____ inches

What is the perimeter of this shape?

_____ inches

What is this shape’s perimeter?

_____ units

What is this shape’s perimeter?

_____ units

What is this shape’s perimeter?

_____ units

What is this shape’s perimeter?

_____ inches

What is this shape’s perimeter?

_____ inches

What is this shape’s perimeter?

_____ inches
Area Has Got You Covered

How many square feet of wallpaper do you need to cover these walls? Learn about area when you solve three problems in a row and get Tic-Tac-Math!

What is the area of this shape?
_____ square units

What is the area of this shape?
_____ square units

What is the area of this shape?
_____ square units

What is the area of this shape?
_____ square units

What is the area of this shape?
_____ square units

What is the area of this rectangle?
_____ square inches

What is the area of this shape?
_____ square units

What is the area of this shape?
_____ square units

What is the area of this rectangle?
_____ square inches

What is the area of this shape?
_____ square units

What is the area of this rectangle?
_____ square inches